

Heart failure and vascular access flow – What are the options?

Jan Malik

General University Hospital in Prague, CZ First Faculty of Medicine, Universitas Carolina, Prague, CZ

Hemodynamic changes after AV access creation

Normal brachial artery flow volume: 80-150ml/min

Brachial artery flow volume: ESRD pts. 60-120 ml/min

Usual flow volume via an AV-access (Qa):

forearm 600-1200 ml/min brachial 800-1500 ml/min

Normal resting cardiac output (CO): 4-6 l/min

Consequences of AV-access creation

Flow competition (hand ischemia, AVF-CABG competition...)

- Heart failure (de-compensation)
 - High-output (hyperkinetic) HF
 - Congestive HF

Pulmonary hypertension

Flow competition

The flow is driven by:

- perfusion pressure (mean arterial-central venous pressure) ↑ ~ cardiac output
- vascular resistance↓

www.matrix.co.nz

Cardiac output and access flow (Qa)

Basile C, Lomonte C. Semin Dial 2018

• Effective CO = total CO-Qa

- High-flow AVF:
 - >1500-2000 ml/min
 - Qa > 1/3 of CO

Heart failure types

- Classic, congestive HF
 - Relatively or absolutely low CO (COef.) at reast or excercise
 - Very frequent
- High-output HF
 - Very high CO
 - Rare

High-output (hyperkinetic) heart failure

- Symptoms of heart failure (dyspnoe, fatique)
- Signs: BNP, ↑ congestion on X-ray, ↑ left atrial pressure
- High cardiac output indexed to body surface area (CI)
- Cut-off values: CI 3.5-3.9 l/min/m²
- Qa usually > 2000 ml/min
- Resolves after banding or other flow reducing procedure

Congestive heart failure

- CO (COef.) relatively/absolutely low
- Signs: BNP, ↑ congestion on X-ray, ↓LV EF, valvular disease....
- Very frequent and associated with ↑↑ mortality
- Qa: any value ("last drop effect")

Heart failure: mechanisms at CKD

Volume overload

- CKD→ impaired Na+H₂O excretion
- Fluid retention between HD (associated w. blood pressure disease)
- Anemia
- AV access flow

Increase of cardiac output (CO)
Temporary "luxurious" tissue perfusion
Later CO decrease

Volume overload

- CKD→ impaired Na+H₂O excretion
- Fluid retention between HD (associated w. blood pressure disease)
- Anemia
- AV access flow

Increase of cardiac output (CO)
Temporary "luxurious" tissue perfusion
Later CO decrease

Volume overload:consequences

Pulmonary and systemic venous congestion

Dyspnoea, edema, impaired organ perfusion

Development of LV systolic dysfunction

Increased mortality

AVF (Qa) effects on the heart

- Cavities enlargement (atria and ventricles)
- Increase of filling pressures (diastolic dysfunction)
- Hypertrophy
- ↑BNP levels
- †sympathetic aktivity
- ↓aortic/arterial stiffness
- ↓ frequency of dialysis-induced regional LV stunning
- ↓ of systemic blood pressure
- ↓ decline of renal function

Frequency of high-flow AVF induced changes

 Higher risk of high-flow AVF development: upper-arm AVF, males, previous access surgery, young

 The incidence of HF associated w. high-flow AVF requiring surgical correction: 3.7%

Qa>2000 ml/min have a greater tendency to LV dilatation than Qa
 <1000 ml/min

Cases: our atttempt

Case 1

- 72-y.o.male, on dialysis, shortness of breath NYHA III
- Qa 1800 ml/min
- Echo: moderate-to severe mitral reg., EF 45%

Steps:

- 1.Dry weight adjustment
- 2. Anemia correction
- 3.??flow-reducing surgery??

Case 2

- 68y.o. lady, NYHA III, fatigueness
- Qa 1500 ml/min
- BP 130/65mmHg, HR 130/min irreg.
- Echo: sligthly dilated, diffusely hypokinetic LV, EF 30%

Steps:

- 1.Arrhythmia control
- 2.Dry weight adjustment?
- 3.??flow-reducing surgery??

ad Case 2

- The most frequent arrhythmia is atrial fibrillation
- If longer lasting "tachycardia-induced cardiomyopathy"

LV dilatation, systolic dysfunction

Case 3

- 57y.o. lady
- NYHA III, no help of dry weight adjustments
- Qa 500 ml/min
- ECHO: CO 2.6 l/min, CI 1.8 l/min/m²

Steps:

- 1. Revascularization?
- 2. Resynchronization?
- 3.AVF ligation, catheter insertion

Case 4

- 54y.o. man practically symptomless
- Qa 6200 ml/min
- Echo: EF 67%, concentric hypertrophy, dilated left atrium

What to do?

Final remarks 1: Indication to flow-reduction:

• HF high-output: with CI > 3.5-3.9 l/min/m²

 HF congestive: symptomatic patients after correction of dry weight, anemia

Always consider Qa in relation to other patient's characteristics

Final remarks 2: AVF

- Is generally the safest dialysis access
- Its impact on the circulation is both positive and negative
- Individualized approach is a must

General University Hospital in Prague